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On Some Spectral Properties of Differential Operator
with Unbounded Operator Coefficient
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Abstract. In this article we research asymptotic eigenvalue distrubtion of boundary value problem
dependent on spectral parameter. Further we calculate the first trace formula of the same problem.
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1. Introduction

In the Hilbert space La(H, (0,1)) (where H is separable Hilbert space) we consider the
spectral problem

Iyl = —y" (t) + Ay(t) + q(t)y(t) = Ay(t) (1)
y'(0)=0 (2)
y(1) (1 +A) = ¢/ (1)(1+h+ ). (3)

Here A is a self-adjoint positive-definite operator in H(A > E, FE is an identity operator
in H), A=' € 0o, and h € R. Under that conditions the operator A is discrete operator.
Denote the eigenvalues and eigenvectors of the operator A by 71 < v2 < ... and @1, p2,...,
respectively. ¢(t) is a self-adjoint operator-valued function in H for each t. Suppose that
q(t) is weakly measurable and the following conditions are satisfied:

—_

M@l < €.t €0,1];

[\)

oo
- > (g () vk, or)| < const; for each t
k=1

1
3. [(q(t) ok, pr)dt =0 for k =1, c0.
0
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Denote a scalar product and a norm in H by (-,-) and |||, respectively. Define the
scalar product in L = Lo(H, (0,1)) & H as

1
V.2 = [ (0240t + 3 (.20, (@
0

Here Y = {y(t), 1} € La, Z ={2(t),z1} € L2, y(t),2(t) €L2(H,(0,1)) ,y1,21 € H .
For ¢(t) = 0 in space Ly one can associate with problem (1)-(3) the
operator Lo defined as

D(Lo) ={Y:Y ={y(t),;}/—y" (t)+ Ay (t) € Ly (H, (0,1)),
¥ (0)=0,91=—-y(1)+y (1)}
LoY = {—y"(t) + Ay(t), y(1) = 1+ h)y' (1)} (5)

The operator corresponding to the case ¢ (t) # 0 is denoted by L = Ly + @, where
Q:Q{y(t),—y (1) +v' (1)} = {q(t)y(t),0} is a bounded self-adjoint operator in Ls.

First we prove some facts about operator Ly and L . Then study the asymptotic
eigenvalue distribution of the operator Lg. After all, we calculate the first trace formula
for the corresponding to problem operator L.

The study of boundary wvalue problems for differential operator equations is
important for the applications to boundary value problems for partial differen-
tial equations.  This kind of problems were investigated in works of a lot of
author’s. As it is well known for operator Sturm-Liouville equation that problem was
studied by Kostyuchinko-Levitan [10]. A formula for the regularized trace was first con-
sidered by .M. Gelfand and B.M Levitan [8]. In that direction we may also refer to
[1,2,3,4,5,11, 14, 13, 12]. One of the boundary conditions of considered problem (1)-(3)
contains eigenvalue parameter. Such problems arise in boundary value problems, when
boundary condition contains partial derivative with respect to time. We may cite Fulton
[7] which include comprehensive list of references on related problems. In [15] consider a
Sturm-Liouville problem with turning points in a finite interval. In [9] investigated the
problem with a spectral parameter in the boundary condition.

In comparison with indicated above works we consider the boundary value problem
for differential equation with unbounded operator coefficient containing first degree poly-
nomial depending on spectral parameter .

2. Asymptotic distribution of eigenvalues

Lemma 2.1. Operator Lo is symmetric in Lo.

Proof. Let Y be from domain of Lg

1
(LoY.Y),, = /0 (=" (1) + Ay (£) g (1)) dt-+
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1
+% (1) —(h+1)y (1), —y(1)+y (1) = —/ (y" (t),y (1)) dt+
0

1
+/0 (Ay(t),y(t))dH%(— (y(1),y W)+ (y(1),y' (1)) +
+(h+1) (' (1),y1) = (h+1) (¥ 1),y (1)) =

1
= (o (1).y () + /0 (W (t).o/ (&) dt + / (y(t) , Ay (£)) di+

0
+7 (= W@,y M)+ @),y (1) +(+1) (¢ 1),y (1) = (h+1) (¥ (1),5' (1)) =
=— 1), y)+ (v(1),y (1)) +/0 (y (), —y" (t) + Ay (1)) dt+

+$ (v 1),y (1) + % (v(D),y' (1) +

S| =

1
- (= 1),y(1) - (h+1) (@/’(1),@/’(1)))2/0 (v (@), —y" (t) + Ay (1)) dt+

+% (@, y)+ G+ (@), y D)+ 1),y1) —(h+1) (¥ (1),y (1)) =

1
= [ @ =+ Aap ) e+ 5y )45 (0.5 (1) = (4 D)y (1) = (VLY )y,
that completes the proof. O

Using that lemma it might be shown that Ly is self-adjoint positive definite
operator. That is why in according to Relliche theorem, Ly also is a dis-
crete operator. Since ¢(t) is bounded then L is also discrete operator because
of relation : R)\ (L) — R)\ (Lo) = R)\ (L) QR)\ (Lo)

Suppose that the eigenvalues of A behave like

Vi ~ gk® k — 00,9 >0,a >0 (6)
The following theorem about eigenvalue of Lg is true.

Theorem 2.2. The eigenvalues of the operator Ly form two sequences:
2 2 1
Ak = Yk + o) ’ak,ol < M = const; Ay ~ Vi + 0y 0 =m0+ O - ,nE Z.

Proof. In virtue of spectral expansion of the self-adjoint operator A for
coefficients yi, (t) = (y (t) , ) we get the following problem

i (1) = (X =) e () (7)

Yp(0) =0 (8)
5



ye(1) = (14 1) (1) = A(=yr(1) + yi(1)) (9)

The solution of problem (7), (8) is yx (t) = cos /A —it. By virtue of condition (9)
eigenvalues of the operator L consist of those real A # 7, , which satisfy at least for one
k the equality

A=k 4+ (14 h) VA —ypsin /A — v =
:/\(—cos\//\—fyk—\//\—’yksin\/)\—’wg> (10)

Search for imaginary roots of equation (10). Denote z = /A — 7% .Then equation (10)
becomes like

cosz+ (1+h) zsinz = — (22 + ;) (cos 2 + zsin 2) (11)

By taking in (11) z =iy , y > 0 we get

chy — (1+ h) yshy = — (v — ¥°) (chy — yshy) (12)

Let us write the equation (12) in the form of series:

& y2n 0 y2n+1 ) 0 2n+1
—(1+h B -
nz%(Qn)! (1+ )ynzo(znﬂ)! (% =) 2 2n+

Therefore we get the following expression

iH% Qn_22+h+2n—|—7k 2n+2+2 2t
o) Y on + 1) 2n+ 1)
n=0 n=0

oo oo
L+ an L+ o L+ ont2
=1 nt2
2 Y T +;2 @)Y

n=0

L+ — 1+
:1_{_,)%_'_ y2+z )y2n+4
n

2 :O(2n+4!
and
2+h—|—2n+’}’k 2n+2 __ 2+h+2n+’}/k 2n+2 _
2+h n
Z @n+ 1l 7 =@+ htw)y +Z (2n + 1)!
4+h+2n+7k oIn-+-4
2+h s
= 2Rty +Z 20+ 3)1
Then we get

1+ o = T+ opaa 2
1 Yo Rt 24k -
to Y :0(2n+4)!y 2+h+%)y
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(2n + 3)! (2n+1)!

2n+4
0

n=0 n=0

We can write the last in the following form

3
1+fyk—<2+h+72"“>y2+

L+ —n+4)A+h+2n+9) + (20 +2) (20 +3) (2n +4) 4,44
D3 ANl
(2n + 4)!
n=0
or 5
Tty — (2 h+ )2t
2 2
o
8n3 +32n% + 36n — 2nh — 2ny, —4h — 3 + 9 9,14
=0 13
> @n 1 0 Y (13)
n=0
Let’s investigate the function a (x) = 823 + 3222 + 362 — 2xh — 22y, — 4h — 3y, + 9.
This function is continuous on the positive semiaxis and a (0) = —4h — 3y, + 9 < 0,

a(z) — 400 as x — +o00. On the other hand the function a (z) has only one sign change
of terms. Using Descartes principle we get there is only one positive root. Denote this root
by x = M. It is clear that a (x) < 0 when x < M and a (z) > 0 when > M. Therefore,
coefficients of series (13) are negative when n < [M]and positive when n > [M]. Because
there is only one change of sign of coefficients in (13). On the other hand for great y values
the following equation has no roots:

1+ —y°
A+h+vm—v>)y

Because left hand side of this equation goes to 1,but right hand side goes to 0 when y — oo.
Let’s write the bounded set of eigenvalues corresponding to existing root A = & + az 0-

Let’s research the asymptotics of eigenvalues which the real roots of equation (11),7111
other words greater than ;. Write this equation in the form

thy =

1—l—fyk—|—22+(1—|—h—|—vk—|—z2)ztgz:0,z€(O,OO),

or
1+ 22+

I RN

tgz = (14)

From (14) we find the following

z-wn+0<1>. (15)

n

The eigenvalues of the operator L corresponding to this roots are
Nen ™~ Vi —1—04,21, Qp=T7n, neEJL

The theorem is proved. O



Lemma 2.3. Suppose that A = A* > E in H ,A”! be compact and relation (6) hold.
Then for the eigenvalues of Lo we can write

An (Lo) ~ dn%,d = const.

Proof. The proof of Lemma 2.3 is similar to the proof of Lemma 2 from [? |.
Let N (A, Lp) be the distribution function of Ly . Then

NAL) =N (M) +Na(N), Ne(A)=>1, Na(A)= Y 1
A <A Am7k<A
By using statement of theorem 1 we get

24«

Ni ~ CiAa, Ny (A) ~ Co) 2

24«

For oo > 0 we get N (A, Lg)~ Col2a .
The lemma is proved. O

Eigenvalues of the operator Lo are { cos (xnt) @k, (—Zkn sin Xy, — COS Tpp) @k }, de-
note the orthonormal eigenvectors of this operator by {¥,} ,n = 1,2,... {pr } are the
eigen-vectors of the operator A, xy, is the root of the equation (11) .

3. Trace formula

Denote, for convenience ,real and imaginary roots of equation (9) , by xy (k =1, oo)
and xy , respectively.

1
1 .
[l = [ cost @)t + 5 (= sinn, = cos ) =

Y14 cos 2zt 1
k, .
= (225 )dt—l——(xknsmxkn—i-cosxkn)Q:
0 2 h ’ k] k]
1 sin2w, x%}n sin® Thm + ka,n Sin T, , COS Tk + cos? Tk

2 4z h

2 Tl + 4:(,'}%7” sin 2xg , + 4:(}k7n cos? Thn

4ha:k’n

2hxy p + hsin 2y, + 4:6,3; 5, SIN

Therefore , we get

tn = By n {cos (xpnt) Pk, (—Tkpnsinzy y, — cos Tkpn) Ok}

B 4hxy,
kn = ; ; ;
" 2hxy p + hsin2zy, + 4.7}% n sin® Tkn + 4.7}% SN 2T o + 4Ty cos? Tkon

8



n=0,00,k=N,00
<n:1,oo,k:1,N—1> (16)

From Lemma 2.3 in similar way as in [11] we get

n=1 n 1

Prove the following lemma.
Lemma 3.1. Provided that for operator-valued function q(t) hold the conditions 1)-3),
then

1
2hay [ cos (2xp ) gi (t) dt
0

>y

h si 123 sin? 127 i 1 2 I
1o 2hzy p + hsin 2z, + Ty, SN Tk p + T, SN 2T + Ty, COS° Tk p
(17)
where qy; (t) = (¢ (t) ¢r. k) -
Proof. For large k and from asymptotics of xy , , we get
2h{L‘k7n <
2hxy, p + hsin 2z, + 437% n sin? Tk + 437% ,, SIN 27, + 4ark7n cos? Tkn
1 1
<sin21kn:1+0<x> : (18)
1 + QIk,n’ kyn
Integrating by parts twice and using condition 4) for ¢ (t) we get
1
/cos 2z 0 t) g (t)dt =
0
1
1 . 1
— o sin (20) g (1) = g [ cos (2ot af (0. (19)
ka,n (Ql'k’n) 9

In virtue of asymptotics ., Ar and (18), (19) it follows from the last relation, that
1
2hzx, . [ cos (2zk ,t) g (t) dt

>y . [P -

2hxy, p + hsin2zy, + 4952,71 sin® xy, p, + 4xk7n sin 2y, + 4z p cos? Thon

S5 (0 (L)) (o k) w +Ojo( et 0 1) <

9




1

< constz aqr (1) +/qg (t) dt
k=1

0

From condition 1) and the last relation it follows absolute convergence of the series

1
2hxy, [ cos (2xpn t) qx (t) dt
0

ZZ 2hxy y + hsin2xy ,

— = + 4m2’n sin? 2y, + 4mi’n sin 2zy,,, + 4y, cos? z, p,

The lemma is proved. O

Theorem 3.2. If the operator function q(t) satisfy conditions 1)-4). Then under the
conditions of lemma 2.1, we get the following reqularized trace formula

R _trq(0) +trq(l)
Ji S O ) = 2O

n=1

Proof. Let us calculate the following using condition 3)

> Qo) =
n=1
1
MNm 4hxk‘ ,n f COS xk nt) ( ( ) Pins (pln) d

_ZQhwkn—l—hsm2xkn—l—4xk sin xkn+4xk sm2xkn—|—4xkncos Tk

1+Cos 2:ck n

4h33knf )( (t) iy i) dt

_Z =

2h$kn+hsm2xkn+4xk sin? azkn+4xk sm2xkn+4xk cos? z, p,

1
2h$knfCOb 22k nt) (q(t) i, i) dt

g hxkn+h81n2xkn+4xk sin? xkn+4:ck sm2xkn+4xk costkn'

According to lemma 3.1 series (17) converges absolutely, so we will have

T'm

n=1

ZZ/ 2hxy , cos (2zpnt) i (t) dt
N 2hxy, p + hsin 2wy, 3 sin? 2 g

2
=10 + 43:,6’” sin® Ty, + 43:,6’” sin 2xg, , + 4xk’n COS* Tj p

10



Let us compute the value of the series

1
) 2hxy p + hsin 2z, + 41‘27” sin® Tk + 41’%7” sin 2wy, + 4xk7n cos? Tk ’

It is equivalent to investigate the asymptotics behavior of the function My (t) as N — oo:

N
2hxi 2xppt
My (1) = Z Ty €OS (2x) pt)

= 2hagpn + hsin 2Ty, + 495%7” sin? 2y, + 495%7” sin 2zy, ,, + 47y, ) cos? Ty p,

Express the k—th term of the sum My () as a residue at the pole zy, of the
following function of complex variable z :

hz cos 2zt

G(2) = 5 ) o \2
+ 22 4+ ;) (cosz + zsin 2)

cos z+z(14h)sin z
cos z+zsin z

This function has simple poles at the points xy, and w, .

We have
hxy , cos2xy , t
Jres Glz) = 2 + (17 h)si '
=Tk,n . . cos z+z(1+h)sinz
(COb Lk,n + Lk,n S xkan) ( cos z+zsin z + 22 + /yk)z z
=Tk,n

Let us calculate the following

’

+2° +'yk> = 2z+

cos z+z(l+h)sinz
cosz + zsinz

n (—sin z+ (1 4+ h)sinz + z (1 + h) cos z) (cos z + zsin z)

(cos z + zsin z)*

(—sinz+sinz+ zcos z) (cos z + z (1 + h) sin z) 9t
— = 2z
(cos z + zsin z)?

N (hsinz+ z(1+ h)cosz) (cosz + zsinz) — zcosz (cos z + z (1 + h)sin z)

(cos z + zsin z)?

hsinz (cosz + zsinz) + 2 (1 + h) cos? z — z cos® 2

(cos z + zsin z)

hsin z cos z + hzsin? 2 4+ hz cos? 2

(cos z + zsin z)?

%sin 2z + hz

=2z + .
(cos z + zsin z)?

11



Then

hxp ., cos2xpn,t
res G(z)= o il —
Z=Tk,n b

. 2 sin 2z, ,+hTy,
(COS hon " hon S xk,n) <2xk7n * (COSZx +z ; sin x ) )2>
k,n k,n k,n

hxy, ,, cos 2zt

2z, (cOS Ty, + Tk SID xk,n)Q + % sin 2z, + hag

2hxy, p, cos 2wyt

N 2hxy n + hsin2zy , + 4x%7n sin? xy, ,, + 4a:i7n sin 2zy,, + 4y, cos? Ty p,
Take into consideration cos wy, + wy, sinw,, = 0, let us find the residue at the point z = wy,:

res G (2) = hwy, cos 2wyt _

Z2=wn, €08 wptwn (14+h) sinwy, 2 .
( s o s, T wi k) 2 (cos wy, + wy, sinwy, ) wy, oS wy,

h cos 2wt

(cos wy, 4+ wp, (1 4 h) sinwy, + (w2 + ) (coswy, + wy, sinwy,)) 2 cos wy,

h cos 2wt

(cos wy, +wp, (1 4 h)sinwy,) 2 cos wy,

h cos 2wt

(cos wy, + wp sinwy, + wph sinwy, ) 2 cos wy,

h cos 2wt cos 2wnt

2wphsinwy, coswy,, Wy, sin 2wy,

Take as a contour of integration the rectangle with vertices at +iB, Ay 4 iB, which
has cut at iz} o and will bypass it on the right and the point —ixy gand the origin on the
left. Take also B > w},0.Then B will go to infinity and take Ay = 7N + 5 . For such
choice of Ay we have zn_1; < Ay < Ny - Since G (2) is an odd function of z, then the
integrals along the part of contours on imaginary axis, and the integral along semicircles
centered at +ixy o vanish. If 2 = u+dv , then for large v and for u >0 G (2) is of order

O (%) that is why for the given value of Ay the integrals along upper and lower

sides of the contour also go to zero when B — oo .
Hence,we get the formula

An+iB
1 . .
MN(t)—l—SN(t)—%Blgnoo / G(z)dz—i-%}l_)né / G(z)dz,
An—iB |z|=r,— 5 <p<%
N
cos 2wyt
Sy (t) = _— 22
~ (1) nz::lwnsin2wn (22)



As N — oo

AN+’LB AN+iOO
cos 2zt
274 B—oo 23 sin® 2z
An—iB AN—iOO

+oo
1 / cos (2r Nt + wt + 2ivt)
(

— = —dv =
AN +iv)” (1 — cos (2AN + 2iv))

+oo
1 / cos ((2N + 1) mt) cos2ivt —sin ((2N + 1) 7rt)sin2ivtd B
2 (Ay +iv)* (1 + cos 2iv)

—0o0
1 oo h 2vtd

_cos((2N—|—1)7rt)/ ch 2vtdv
27 o (AN +iv)” (1 + cos2iv)
1 teo h2vtd

+——sin (2N + 1) m)/ Sk (23)
2mi oo (AN +1v)” (14 cos2iv)

Denote the integrals on the right hand side of (23) by K; and K3, respectively. Then,

+o00
1 h 2vt
|K1| = |=— cos ((2N + 1) =t) / 03 Y v
27 (An +iv)” (1 + cos 2iv)
[e%e) —+00
< 1 / ch2vt dv < 1 / ch2vt
- 5 =
Trfoo /(A?V 4 1)2)3 (1+ ch2v) ANﬂ—oo 14 ch2v

= 0. 24
A%Vcos%t Njoo (24)

The similar estimate is obtained also for K5 .So, by using (23) and (24) in (22),we get

1 1
lim My (t) gi (t) dt = — lim SN (t) g (t) dt+
N—oco 0 N—o0 0
+27m }gr(l) ; qx dt/‘z| — G (2)dz (25)
—5 <<

By condition 3) the second term in the right hand side of (25) can be written as

1 ! hz cos 2zt
— lim [ qx (%) i dzdt =

21wt 70 cos z+z(1+h)sinz 2 . 2
0 ler_cpcz \coszizemz + 22 4+ ;) (cosz + zsin 2)
’ 2 2

1 1 h 2zt — 1
=— lim [ q (%) / 1+h)si et ) dedt =
(w 4224 yk> (cos z + zsin 2)2

s s i
|z\=r,f§<<p<§ cos z+zsin z

13



zi. lim 1% (t) /

7T r—0 0
|Z|:T77%<KP<%
_h 102 t
e zsin® z : Dt
COS 212 sinz .
(W + 22+ 'yk> (cos z + zsin z)
1 ! B —2hzsin? 2t
~— lim g (1) /_ﬂ R —dzdt ~
COS 212 S z .
T ? (W + 22 + 'yk) (cosz + zsin 2)
1 ! B —2hzsin? zt 1
~ = lin% qr (t) /_Tr con 21 2(Lh) inz 5 dzdt ~ lir%/ ar (t) X
e ’ (W+22+’Yk> (cos z + zsin z) r=0Jo
s ) 4
< /2 —%hz (rew) dpdt o

2L+ (L b (reie)? + (L4 B) (o) 4+ ((rei)? 00 (14 (reie)+ (reie)')
Using the above calculation (25) gets the following form

1 1
lim MN< ) (t) dt = — lim A SN (t) qk (t) dt; Sy (t) =

N—oo Jo N—oo

CoS 2wy, t
— Wn sin 2w,

Express the k—th term of the sum Sy (t) as a residue at the pole xy, , of some function of

: . _ cos 2zt
complex variable z : F (z) = S(cos 7 2 5in )53

CoS 2wy, t Ccos 2wy, t cos 2wt
res F(z) = = - = :
F=Wn 2 (cos z + zsin z) r—wn, sin wy, 2wy, COS Wy, SIN Wy, Wn, SN 2wy,
cos2mnt cos 2mnt 1
res F(z) = ™ = T _ 2 cos2mnt
z=mn 2(cosmn + mnsinmn)cosmn  2cos?mn 2
We can write the following
1 AN—H,B
li dz+—1 F(z)d
Sn (6) + R (1) = 27TZBI—I>I<1>0/AN_Z-B F(z) Z+2mrl~r>%/‘z|—7" (z)dz
—5<p<3

So, as the above opinion and by substitution 7t = z we have

1 1 0 rlq
lim SN () q (t) dt = — lim Ry (t) qx (t) dt = — Z/ 5 cos 2t qi (t) dt =
0 0 0

N—o0 N—oo

1 o (! 1 [* z
- Z/ cos 2mnt qi, (t) drt = —— Z/ cos 2nz qi, (—) dz =
™= Jo 2T “—=Jo m

14



1 9 [T
Iy e
2 [T 1
+COS71'7T-/ cosnz fi (Z>dz] :_M
T Jo s )
Summing by all k£ , we get
m 3 — qk (0) + qx (1) trq(0) +trq(1
lim Z()‘n—#n):z (0) (): (0) (1)
n=1 k=1
Theorem is proved. 0
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